Antkillerfarm Hacking V8.0

resource » 名校机器学习相关课程(一)

2018-01-24 :: 7918 Words

名校机器学习相关课程

PRML

除了吴恩达的cs229之外,Bishop的《Pattern Recognition and Machine Learning》也是ML领域的经典书籍。

Christopher Michael Bishop,1959年生,牛津大学本科+爱丁堡大学博士。爱丁堡大学教授。英国皇家学会会员。

中文版:

https://www.gitbook.com/book/mqshen/prml/details

PRML的python实现:

https://github.com//ctgk/PRML

PRML的matlab实现:

https://github.com/PRML/PRMLT

Stanford AI课程表

  • 新生

秋季:CS106A

冬季:CS106B/X,CS109

春季:CS103,CS107

  • 二年级

秋季:CS221,CS131,统计信息202

冬季:CS124,CS161

春季:CS231N,CS110

  • 三年级

秋季:CS229

冬季:CS228,CS224N

春季:CS224W

  • 四年级

秋季:CS238

冬季:CS246,CS234

参考

https://github.com/prakhar1989/awesome-courses

精品课程大全集

https://github.com/kmario23/deep-learning-drizzle/blob/master/README.md

50+门《深度学习、强化学习、NLP、CV》课程超级大列表

https://mp.weixin.qq.com/s/tsidF_I5-QfaKUlX6Smtsg

这有300+门刚刚开课的编程计算机科学免费课程大集合

http://ufldl.stanford.edu/wiki/index.php/Main_Page

斯坦福的《Unsupervised Feature Learning and Deep Learning》教程,该网站本身就有中文翻译。

https://zhuanlan.zhihu.com/p/22038289

斯坦福CS231n课程(卷积神经网络,CNN)翻译。

https://mp.weixin.qq.com/s/TL15EgRfbIFnaOo6-SimfQ

斯坦福CS231n(李飞飞):卷积神经网络视觉识别课程讲义(完整版)

https://github.com/afshinea/stanford-cs-229-machine-learning

CS229小抄精华版

http://openclassroom.stanford.edu/MainFolder/VideoPage.php?course=MachineLearning

Andrew Ng的公开课视频。

https://web.stanford.edu/class/cs230/syllabus.html

CS230: Deep Learning。吴恩达2018年开的新课

https://stanford.edu/~shervine/teaching/cs-221/

学霸双胞胎开源斯坦福CS 221人工智能备忘录

这个教程以及下面的两个教程的作者是一对来自法国的学霸双胞胎,Afshine Amidi和Shervine Amidi。Afshine在MIT读完了硕士,目前是Uber的数据科学家。Shervine现在则是斯坦福硕士在读。

https://stanford.edu/~shervine/teaching/cs-230.html

CS230的Cheatsheet

https://github.com/afshinea/stanford-cs-230-deep-learning

CS230的Cheatsheet的PDF版本

http://www.cc.gatech.edu/~lsong/teaching/

佐治亚理工学院宋乐副教授的课件库。

http://web.cs.iastate.edu/~cs577/

Problem Solving Techniques for Applied Computer Science

https://onlinecourses.science.psu.edu/stat857/

Applied Data Mining and Statistical Learning

http://www.cs.unc.edu/~lazebnik/spring11/

Computer Vision

http://www.cnblogs.com/wei-li/archive/2012/03/24/2406404.html

网络公开课资源——关注CS/AI/Math

http://www.cs.columbia.edu/~blei/seminar/2016_discrete_data/index.html

Probabilistic Models of Discrete Data

http://mp.weixin.qq.com/s/dtg-alezht56mu_vOA4Lrg

14所世界顶级名校在线免费算法课程。这里的课程主要是非机器学习类的计算机算法。

http://mp.weixin.qq.com/s/qW_RZ–df6MjaKNgNdjeWA

10所世界顶级名校的25门在线免费机器学习课程!

https://lib-nuanxin.wqxuetang.com/

清华大学网上课程——文泉学堂

http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml

CMU的Machine Learning

https://mp.weixin.qq.com/s/MlM39pbyr5G7Crgq0j4PGw

Bengio领衔:DeepMind、谷歌大脑核心研究员2017深度学习最新报告(该课程只适合有深度学习基础的人)

https://mp.weixin.qq.com/s/a5MBQqYCWmUMLpVXhOvg8Q

Yoshua Bengio深度学习暑期课程

https://mp.weixin.qq.com/s/CxKicJBvnk6FYWE4KuVmHw

二十六条深度学习经验,来自蒙特利尔深度学习

https://mp.weixin.qq.com/s/Bv1psJFFnZdYWW9reCbtrQ

2017年蒙特利尔深度学习暑期学校ppt分享

http://elmos.scripts.mit.edu/mathofdeeplearning/

Mathematical Aspects of Deep Learning

http://ciml.info/

马里兰大学的机器学习课程

http://mbmlbook.com/toc.html

Chris Bishop发布在线新书。Bishop 2007年的《Pattern Recognition And Machine Learning》一书绝对是经典之作,然而难度偏高。这本是入门级别的。

https://mp.weixin.qq.com/s/6XEUATgudV9AT7Y8FLfdlQ

台大林轩田:机器学习基石(全套65课中文视频)

http://yerevann.com/a-guide-to-deep-learning/

国外网红的深度学习指南

https://am207.github.io/2017/

哈佛课程:Advanced Scientific Computing: Stochastic Optimization Methods. Monte Carlo Methods for Inference and Data Analysis

https://www.deeplearning.ai/

吴恩达离开百度之后开设的DL教程

https://study.163.com/topics/deepLearning/

这是网易提供的deeplearning.ai课程的中文版

https://github.com/dformoso/machine-learning-mindmap

ML思维导图

https://github.com/dformoso/deeplearning-mindmap

DL思维导图

http://neuralnetworksanddeeplearning.com/

Michael Nielsen写的DL blog。

https://cs.nju.edu.cn/zlj/Courses.html

南京大学张利军:数据挖掘和优化

https://nndl.github.io/

复旦邱锡鹏(FudanNLP项目负责人):神经网络与深度学习

https://github.com/FudanNLP/nlp-beginner

复旦大学NLP入门教程

http://joanbruna.github.io/stat212b/

Stat 212b:Topics Course on Deep Learning——加州大学伯克利分校统计系Joan Bruna(Yann LeCun博士后)以统计的角度讲解DL。

https://blogs.princeton.edu/imabandit/orf523-the-complexities-of-optimization/

ORF 523: The complexities of optimization

https://cs.brown.edu/courses/csci1460

CSCI 1460: Introduction to Computational Linguistics

https://berkeley-deep-learning.github.io/

UCB的DL课程

http://web.cs.ucdavis.edu/~yjlee/teaching/ecs174-spring2017/

ECS 174: Computer Vision

http://web.cs.ucdavis.edu/~yjlee/teaching/ecs289g-fall2016/

ECS 289G: Visual Recognition

http://www.cs.jhu.edu/~misha/Fall04/

Seminar on Shape Analysis and Retrieval

http://info.usherbrooke.ca/hlarochelle/neural_networks/description.html

Hugo Larochelle: Online Course on Neural Networks

http://www.stat.cmu.edu/~larry/=sml/

CMU:Statistical Machine Learning 2016

http://www.stat.cmu.edu/~ryantibs/statml/

CMU:Statistical Machine Learning 2017

http://people.ece.umn.edu/users/parhi/slides.html

VLSI Digital Signal Processing Systems: Design and Implementation

https://stats385.github.io/

STATS 385:Theories of Deep Learning

http://www.cs.cmu.edu/~rsalakhu/10707/lectures.html

CMU:Deep Learning 2017

https://software.intel.com/en-us/ai-academy/students/kits

Intel提供的课程,包括ML和DL两门课程。

http://www.stats.ox.ac.uk/~teh/courses.html

Oxford的Yee Whye Teh提供的ML课程,偏统计方向。

https://mp.weixin.qq.com/s/iUmRZMpQJpaV4jNxmp-z4w

面向搜索的深度学习实战书籍和代码《Deep Learning for Search》

https://mp.weixin.qq.com/s/txT8qLxpQQ62DAPVS1NTDA

DeepMind深度学习最佳实践与新技术展望

http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf

南京大学魏秀参:《解析卷积神经网络—深度学习实践手册》

https://agi.mit.edu/

MIT 6.S099: Artificial General Intelligence

http://deeplearning.cs.cmu.edu/spring2018.html

11-785 Introduction to Deep Learning

http://introtodeeplearning.com/

MIT 6.S191: Introduction to Deep Learning

http://3dvision.princeton.edu/courses.html

普林斯顿的DL课程

https://www.cs.princeton.edu/courses/catalog

普林斯顿的CS课程

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/

多伦多大学CSC 321: Intro to Neural Networks and Machine Learning

http://www.math.pku.edu.cn/teachers/ganr/course/pr2010/

北京大学:模式识别

http://slazebni.cs.illinois.edu/spring17/

CS 598 LAZ: Cutting-Edge Trends in Deep Learning and Recognition。这是一门研究生的课程,很有深度和广度。

https://tianchi.aliyun.com/markets/tianchi/aiacademy

阿里发布免费深度学习课程

https://www.isip.piconepress.com/courses/msstate/ece_8443/index.html

ECE 8443: pattern recognition

https://www.isip.piconepress.com/courses/msstate/ece_8423/index.html

ECE 8423: adaptive signal processing

http://crcv.ucf.edu/courses/

UCF的系列Vision课程,其中的CAP 6412:Advanced Computer Vision是一门高级课程。

http://www.cs.tut.fi/~tabus/LSC.html

SGN-2306 Signal Compression

http://www.cs.tut.fi/~tabus/course/AdvSP.html

SGN 21006 Advanced Signal Processing

http://www.cs.cmu.edu/~me/811/mathfund.html

16-811: Math Fundamentals for Robotics

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/

Dynamic Systems and Control

http://www.cs.tut.fi/~hehu/SSP/

SGN-2607 Statistical Signal Processing

http://web-static-aws.seas.harvard.edu/courses/cs281/

CS281: Advanced Machine Learning

https://cs.nyu.edu/~panozzo/ustc/

Robust Mesh Generation and Applications to Geometry Processing

https://cyclostationary.blog

Cyclostationary Signal Processing。这个是一个在信号处理领域使用统计学的blog。作者Chad Spooner,UCB本科(1986)+UCD博士(1992)。

https://mp.weixin.qq.com/s/150raN1kPc6c0pAB1DVLWw

118页概率思维教程——基础、技巧与算法

https://mp.weixin.qq.com/s/iPuP2WOcFTpO-EomfS6sjg

554页《统计关联性与概率编程》教程

https://mp.weixin.qq.com/s/c1M5R3AYhIpJX0MHmp52_g

246页《统计机器学习与凸优化》教程

https://mp.weixin.qq.com/s/OCjznxO1WjJnnryuK8uRTw

Scikit-learn作者之一可微分动态编程51页教程

https://mp.weixin.qq.com/s/LtmzL4nk-yS7G7zKv5jR8A

帝国理工学院134页机器学习中的数学知识

https://mp.weixin.qq.com/s/YVNuuH0yyZx0_L4ch6gcbw

220页深度神经网络训练归一化: 数学基础与理论、挑战

https://mp.weixin.qq.com/s/E7ajoDSxEGktqYuEfFo33A

220页深度神经网络基础、理论与挑战PPT

https://mp.weixin.qq.com/s/35vcaVsFPRTEWQ1ZP9y51Q

228页教程全面理解视觉定位技术

https://mp.weixin.qq.com/s/1MzoBW3e_crV1n-MMWjATg

308页教程介绍最新几何对象映射技术,functional maps

http://data8.org/

UCB的数据科学基础课程:The Foundations of Data Science

http://www.ds100.org/

UCB的数据科学高级课程:Principles and Techniques of Data Science

https://aws.amazon.com/cn/training/learning-paths/machine-learning/

亚马逊内部机器学习课程

https://mp.weixin.qq.com/s/mGM5nJJrWpSISWqXdlIDFg

计算机视觉入门教程系列—125页带你回顾CV发展脉络

https://mp.weixin.qq.com/s/o50c2cMjUSmR8Ea6v925_w

食物图像分析——55页PPT带你学习食物图像分析相关研究进展

Fork me on GitHub